
  

 

Abstract—This paper focuses on the application of active 

suspensions to vehicles with solid-axles for medium and light 

duty trucks. These vehicles are prone to rollover issues and 

compromised ride quality. A cascade control structure is 

proposed considering a time scale analysis of the various modes 

in the vehicles’ dynamics. The structure consists of: a) an upper 

level predictive anti-roll controller that uses road preview 

information for generating an optimal reference roll angle, yaw 

rate and roll moment distribution, and b) a lower level 

sprung/unsprung mass motion controller that tracks the 

reference roll angle and regulates other states. Simulation 

results indicate that the proposed system is able to reduce 

sprung mass acceleration, improve tire-road contact, stabilize 

roll motion and enhance the yaw response of the vehicle. 

I. INTRODUCTION 

In modern vehicles, ever-increasing customer 

expectations of safety, comfort, handling and ride quality 

demand a well-integrated suspension system design. To 

optimize for all these expectations, active suspension 

systems have been in development for the last few decades. 

However, due to cost reasons, most of the active suspension 

designs have been fully independent suspensions targeted 

for luxury vehicles. Medium to light duty trucks (e.g. pickup 

trucks) and off-road vehicles are often designed with 

dependent solid-axle suspensions. With fewer linkages and 

no CV joints, dependent suspensions offer better reliability 

and durability for the targeted functions of these vehicles. 

However, dependent solid-axle suspensions involve large 

unsprung masses and entail a dynamic coupling between the 

tire/wheel motions in the left and right corners. These factors, 

combined with the typically high CG position of these 

vehicles lead to poor ride quality, unsatisfactory handling 

performance, and high risk of rollover compared to luxury 

vehicles with independent suspensions. In addition, these 

vehicles are also very often used off-road, with variable 

loading, and feature much higher power to weight ratio, 

which increases their chances of being involved in high 

speed cornering events with poor road traction conditions. 

All these considerations make active dependent suspensions 

an attractive option for medium to light duty vehicles with 

off-road use.  

Whether the suspension system is dependent or 

independent, the main objectives of incorporating active 

suspensions are rollover prevention, improving ride quality 

and enhancing handling performance. There are numerous 

previous research works about each of these topics. Since the 

 
Q. Zhu and B. Ayalew are with the Clemson University-International 

Center for Automotive Research, Greenville, SC, 29607 (Corresponding 
author: qilun@g.clemson.edu; beshah@clemson.edu, Phone: 864-283-7228, 

Fax: 864-283-7208). 

1970s, partially active suspensions (e.g. active anti-roll bars) 

have been applied to stabilize the roll motion of a vehicle’s 

sprung mass [1][2][3][4]. Most of these applied linear 3DOF 

vehicle models (roll, yaw and slip) for simulation and 

controller design. Although ride quality and handling 

performance were not the main concerns with these 

approaches, the 3 DOF model provided analytical 

understanding of roll-yaw coupling and the possibility of 

integrating nonlinear tire behavior in the controller design. 

Ride quality became the primary concern of active 

suspension systems with the development of high bandwidth 

independently actuated hydraulic units. Decoupling between 

the left and right actuators made it possible not only to 

stabilize roll motion but also the pitch and bounce motions of 

the sprung mass [5]. Based on the Multiple Input Multiple 

Output (MIMO) nature of this control problem, Linear 

Quadratic (LQ) controllers designed based on a full vehicle 

model were proposed by many authors [6][7]. More recently, 

ref [8] discussed the possibility of applying Model Predictive 

Control (MPC) to reduce actuation effort, improve ride 

quality and stabilize vertical tire loads. In their work, road 

surface disturbance is previewed using an optical terrain 

scan and the control problem is posed as one of minimizing 

both control effort and sprung mass acceleration for a future 

prediction horizon. The present work is in part inspired by 

the road preview use in ref [8], but it goes beyond just ride 

quality. 

Many works considered the possibility of improving 

handling performance with active suspensions 

[9][10][11][12]. These works manipulated lateral load 

transfer via front/rear Roll Moment Distribution (RMD) to 

influence cornering stiffness distributions and thereby the 

lateral dynamics, assuming that roll motion is easily 

stabilized. These strategies neglect that fact that under some 

transient scenarios an active suspension could be made to 

intentionally increase roll angle inward or outward using say, 

previewed road curvature, to reduce actuation effort and 

improve handling stability. On the other hand, for comfort 

considerations, the roll angle of the sprung mass should be as 

small as possible. Combining these considerations leads to a 

MIMO optimal control problem. However, RMD affects 

yaw rate and slip angle nonlinearly [9]–[13], which causes 

many practical issues for implementing online optimal 

controllers. The present paper provides an intuitive analysis 

of these nonlinear characteristics of RMD and how they may 

be accommodated with a scheduled linearization and online 

quadratic optimization.   

It turns out that the above three objectives can be met with a 

control structure that exploits the time scale separation
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between unsprung mass dynamics, sprung mass dynamics 

and driver steer input. A hierarchical or cascade structure 

that separates the coupled system dynamics into a slow 

upper level control layer and fast lower level control layer 

has been applied in many control projects [14][15]. The 

advantage of this methodology is that it reduces the model 

order for the upper level controller by assigning the task of 

managing the high frequency dynamic modes to the lower 

level controller. Therefore, the upper level controller has 

more execution time to run more complex control algorithms 

and possibly generate reference/target signals for the lower 

level control loop to track. However, the interface between 

the two layers should be explicitly addressed. In the present 

paper, such an approach is proposed for control of a vehicle 

with active suspensions. In the cascade, a fast lower level 

LQG controller is used to improve ride quality and tire 

contact conditions, while the yaw rate response and roll 

stability is enhanced with a slower upper level MPC 

controller. 

An additional feature incorporated in the proposed upper 

level MPC controller is the use of trajectory preview 

information. The idea of preview information has been used 

extensively in unmanned ground vehicle trajectory 

optimization [16] and for other advanced driver assist 

systems [17]. The approach we take here, however, targets 

reducing/optimizing the required RMD actuation effort 

while generating an optimal reference roll angle using the 

preview information. 

The rest of the paper is organized as follows. Section II 
describes the vehicle model and control hierarchy. Section III 
gives the details of the upper-level control, including the 
predictive control formulation. Section IV details the 
lower-level sprung/unsprung mass motion control. Section V 
discusses select simulation results, followed by the 
conclusions of the work in Section VI. 

II. VEHICLE MODEL AND CONTROL HIERARCHY 

We adopt a 9 DOF full vehicle model for a vehicle with 
dependent solid axle suspensions(Figure 1) The equations 
describing this system can be derived via Lagrange’s method. 

The 9 DOF [                           ] along with the 

time derivatives of the last 7 DOF result in a 16
th
 order 

nonlinear system. The reader is referred to the nomenclature 
for definitions of the symbols used. 

 
Figure 1: 9 DOF full vehicle model 

We also adopt the empirical tire model [9][11] for the tire 

lateral force:  
Ftire = C1αFz + C2αFz

2 (1)  

Including body roll to the “bicycle model” for handling,  

the relevant equations of motion are: 

m(v̇ + Vr) + mshϕ̈s =∑Ftire (2) 

Izzṙ − Ixzϕ̈s = a∑Ftiref − b∑Ftire_r  (3) 

For a driver model, we shall use a simple controller with 

trajectory deviation feedback with first order lag: 

 
δ(s)

De(s)
=

Kd
1 + τs

 (4)  

where the deviation De is measured at predictive distance 

La ahead of the current position of the vehicle: 

De = Y +ψLa − YL (5) 

A linearized eigen frequency analysis of the system 

(Table I) shows a clear time scale separation which suggests 

the suitability of a cascaded control structure, separating 

control tasks between the fast (unsprung mass) and slow 

(sprung mass) motions.  

TABLE I:EIGEN FREQUENCY RANGES OF THE DIFFERENT MODES OF MOTION 

Driver, yaw rate and slip 0.7-1.2 Hz 

Roll, pitch and bounce 1.6 – 2.5 Hz 

Unsprung mass 

dynamics 
10 – 17 Hz 

Figure 2 shows the proposed cascade control structure 

for the vehicle with an active suspension system. At the 

upper level, a model predictive control (MPC) framework is 

implemented to optimize between roll angle, yaw rate and 

actuation power. A practical consideration for adopting 

MPC for the upper level control is that there is enough time 

for online optimization in MPC since the eigen frequencies 

attributed to the handling modes (roll, yaw, slip) are slow.  

The MPC control is provided with a future yaw rate 

reference and possibly future steering angle generated by the 

yaw rate prediction block (Figure 2). This prediction block 

executes an online closed-loop simulation of the driver 

model controlling a reference bicycle vehicle model to track 

the future/previewed trajectory reference (Yref). At the lower 

level, an LQG controller is designed focusing on controlling 

primarily the unsprung mass motion and but also tracking 

the sprung mass roll angle reference generated by the upper 

level MPC loop. This later aspect is necessary because, with 

the preview information, the MPC optimization may 

intentionally alter the reference roll angle to improve the 

vehicle’s yaw response under transient scenarios. Vehicle 

modes considered in the lower loop have higher natural 

frequencies, which favor offline calibration of the LQG 

controller using standard design tools.  
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Figure 2: Cascade control of vehicle with active suspension system 

III. UPPER LEVEL ANTI-ROLL MOMENT CONTROL 

The actuation bandwidth is selected as 3 Hz according to 

the eigen frequency analysis (Table I). This excludes 

consideration of the unsprung mass dynamics, whose 

motions are assumed to be regulated with the low level LQG 

loop. Therefore, for the MPC design, the vehicle model is 

simplified to the 3 DOF one comprising of equations (2), (3) 

and (6).  

 Ixxϕ̈s − Ixzṙ − mshs(v̇ + Vr) = 

mshsgϕ − (kϕfϕ+ cϕfϕ̇) − (kϕrϕ+ cϕrϕ̇) + T1 + T2 
(6) 

This 3DOF model shows linear coupling between the 

yaw rate and roll angle states. However, the effect of the Roll 

Moment Distribution (RMD) is still not explicitly expressed. 

Assuming that the active suspension stabilizes the sprung 

mass roll motion ideally,   =  ̇ =  ̈   , the 3 DOF 

model can be reduced to the 2 DOF model: 

m(v̇ + Vr) =∑Ftire (7) 

(Izz + Ixz)ṙ = 

(
mshs
m

+ a)∑Ftire_f  − (
mshs
m

+ b)∑Ftire_r + T1 + T2 
(8) 

The front and rear wheel loads relate to the added roll 

moments according to: 

Fzf = mg
b

W
±

T1

L1
;       Fzr = mg

a

W
±

T2

L2
 (9) 

Substituting (9) into (1), (7) and (8), we have: 

 ̇ = 

2

𝑚
[(𝐶1 𝑊 + 𝐶2 𝑊 

2)𝛼 + (𝐶1 𝑊 + 𝐶2 𝑊 
2)𝛼 

+ 𝐶2 𝛼 
𝑇1
2

𝐿1
2 + 𝐶2 𝛼 

𝑇2
2

𝐿2
2 ] − 𝑉  

(10) 

 ̇ = 

2

(𝐼𝑧𝑧 + 𝐼𝑥𝑧)
[(
𝑚 ℎ 
𝑚

+ 𝑎) (𝐶1 𝑊 + 𝐶2 𝑊 
2)𝛼 

− (
𝑚 ℎ 
𝑚

+ 𝑏) (𝐶1 𝑊 + 𝐶2 𝑊 
2)𝛼 +

1

2
(𝑇1 + 𝑇2)

+ (
𝑚 ℎ 
𝑚

+ 𝑎)𝐶2 𝛼 
𝑇1
2

𝐿1
2 − (

𝑚 ℎ 
𝑚

+ 𝑏)𝐶2 𝛼 
𝑇2
2

𝐿2
2 ] 

(11) 

where, the front and rear axle slip angles are given 

by: 

𝛼 =
𝑣+ 𝑎

𝑉
− 𝛿; 𝛼 =

𝑣− 𝑏

𝑉
 

 

Equation (10) and (11) indicate that the RMD  (=
(T1 − T2) ) affects handling performance nonlinearly. A 

similar conclusion is also drawn in [9] using a different 

approach. This point is illustrated further in Figure 3, which 

show the steady state  r  and    responses (from 

  a    r  va   s a  T1 − T2=0) versus the RMD for different 

steer angles δ. These two figures indicate that roll moment 

distribution has a large influence on   and r. The use of a 

linearized model seems acceptable. However, it can also be 

observed that control authority of the roll moment 

distribution over yaw rate and body slip angle is greatly 

influenced by the prevailing steer angle. This suggests 

scheduling the linearization with respect to steer angle (in 

addition to vehicle speed, as we do below). 

We derive a nonlinear MPC (or nMPC) design as follows. 

The vehicle speed is assumed to be constant during the 

maneuver and the 3 DOF vehicle model can be written in the 

following nonlinear state space form: 

ẋMPC = AMPC(δ V)xMPC + BMPC(δ V) MPC 
yMPC = CMPCxMPC 

(12) 

where: 

xMPC = [r v ϕs ϕ̇s]
T
;  yMPC = [r ϕs]

T; 

 MPC = [T1 T2]
T 

 

 
Figure 3: Effect of anti-roll moment distribution on steady state yaw rate 

response at 90 km/h. 

Discretizing this above model at a chosen sampling 

interval (here 0.1s), we obtain: 

xMPC(k + 1) = 
Ad(δ(k) V)xMPC(k) + Bd(δ(k) V) MPC(k) 

yMPC(k) = CdxMPC(k) 

(13) 

Prediction of the output for future horizon N can be done 

by: 

YN+1 = FNX0 + GNUN 
(14) 
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where: 
YN+1 = [yMPC(k + 1) ⋯yMPC(k + N)]

T ;   

X0 = [xMPC(k)  MPC(k)]
T; 

UN = [ MPC(k + 1) ⋯ MPC(k + N)]
T 

As mentioned before, given future trajectory information, 

the future steering input sequence δ(k + 1)   δ(k + N) can 

be estimated from the yaw rate prediction block (Figure 2). 

For the N-step prediction horizon at time k, FN and GN are 

constant matrices. A practical methodology to simplify the 

formulation of (13) is to assume the system to be linear time 

invariant for the prediction horizon. Then: 

FN = [
CdAd

2 (δ(k)) CdAd(δ(k))Bd(δ(k))

⋮ ⋮
CdAd

N+1(δ(k)) CdAd
N(δ(k))Bd(δ(k))

] 

GN = [
CdBd(δ(k)) ⋯  

⋮ ⋱ ⋮
CdAd

N−1(δ(k))B(δ(k)) ⋯ CdBd(δ(k))
] 

(15) 

The drawback of this simplification is that future steering 

angles are not included. However, for a short prediction 

horizon and a reasonable MPC updated rate, with new driver 

steering angles at each MPC update, acceptable results can 

be obtained. Recall that the vehicle system model 

linearization is still scheduled with respect to steer angle per 

the analysis depicted in Figure 3. Furthermore, the future 

predicted yaw rate reference is still included in the MPC 

optimization as discussed below. 

The optimal control sequence for prediction horizon N 

can be solved for using quadratic programming. The 

optimization problem is posed as follows: 

mi [(YN+1(δ) − RNN)
TQy(δ)(YN+1(δ) − RNN)

+ UN
TPuUN]   

s     LBu < UN < UBu 
LBy < YN+1 < UBy 

(16) 

where: 
𝑅𝑁𝑁

= [[  𝑒 (𝑘 + 1)   𝑒 (𝑘 + 1)] ⋯ [  𝑒 (𝑘 + 𝑁)   𝑒 (𝑘 + 𝑁)]]
𝑇

 

  𝑒  is the reference yaw rate sequence from the yaw rate 

prediction block (Figure 2); ϕref  is the reference roll 

angle input for the MPC block and it is set as zero. Note 

that this is different from ϕreference in Figure 2. Qy and Pu 

are the weighting matrices of reference tracking 

performance and control effort. 

Substituting (14) into (16): 
mi [(FNX0 + GNUN − RNN)

TQy(δ)(FNX0 + GNUN
− RNN) + UN

TPuUN]   

s          LBu < UN < UBu 

GN
−1(LBy − FNX0) < UN < GN

−1(UBy − FNX0) 

(17) 

The lower bound and upper bound of the control effort 

(𝐿   and    ) are selected according to available actuator 

capacity. Constraints of yaw rate and roll angle can be 

calculated based on friction coefficient and suspension travel 

(rattle space).  

For the MPC implementation in this work, a prediction 

horizon of 2 seconds and an MPC update rate of 0.1 seconds 

have been used. The former is of the order of 50m preview 

distance at a vehicle speed of 90km/hr. 

IV. LOWER LEVEL MOTION CONTROL 

For vehicles with dependent suspensions, the usually 

large unsprung inertia influence body acceleration 

magnitudes in high frequency range. The required minimum 

bandwidth of actuation for controlling both sprung and 

unsprung mass motions is then about 20 Hz. Assuming that 

this is achievable, a MIMO LQG motion controller can be 

designed as follows. Since yaw rate and slip angle are not 

evaluated in the LQG loop, the system model can be reduced 

to a 7 DOF model. Roll angle reference is passed down as an 

output of the MPC optimization loop. Equation (19) 

describes the closed-loop dynamics of the lower level 

control loop.  

[
ẋ7DOF
ẋ̃

] = 

[
A7DOF −B7DOF LQGF

LLQGCy A7DOF − B7DOF LQGF − LLQGCy
] [
x7DOF
x̃

]

+ [
Bw
 
]w + [

 
LLQG

] v + [
 

−LLQG
] ry 

ŷ = 𝐶�̂� 

(19) 

where: 

x̃: states of estimator ; yLQG = [ϕ ϕ̇ θ̇ żs]
T
; 

ry = [ϕMPC      ]
T;   = [ 1  2  3  4]

T; 

F: optimal control gain from LQR. 

LLQG: optimal estimation gain from Kalman filter 

 

V. SIMULATION RESULTS 

Simulations are conducted with the proposed active 
suspension control system implemented on a vehicle with 
dependent suspensions and the following main parameters. 

TABLE II: MAIN PARAMETERS OF THE VEHICLE USED FOR SIMULATION 

Vehicle Type Pickup truck 

Vehicle mass 2298 kg 

Unsprung mass 
150 kg (front) 

150 kg (rear) 

Static weight distribution 63/37 (front/rear) 

Wheel base × track width 4 m×2 m 

Suspension spring rate 
198 kN/m (front) 

300 kN/m (rear) 

Suspension damping 5000 N/(m/s) (front & rear) 

Tire vertical spring rate 250 kN/m 

The proposed cascade active suspension control is 
evaluated in simulations of a 90 km/h Double Lane Change 
(DLC) maneuver. The power spectral density of the road 
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surface elevation is set as  × 1 −  m2  z. The reference 
vehicle is simply a bicycle model with the same mass and 
wheelbase as the truck. However, the weight distribution is 
55/45, which results in close to a neutral steer (considered 
ideal) handling tendency. 

As can be seen in Figure 4, the active suspension system 

reduces the understeer tendency of the original vehicle 

without inducing any instability. As the result, the trajectory 

tracking performance is significantly improved. The active 

suspension system also reduces roll angle and improves yaw 

response as expected (Figure 5). There are some transient 

scenarios (around 1.5s and 3.5s) where the roll angle is 

intentionally increased to improve yaw response due to the 

preview information incorporated in the MPC optimization. 

In some other cases (around 0.3s and 4.5s), an opposing roll 

motion is initiated just before the actual steer maneuver. This 

action increases the roll stability of the vehicle and saves 

peak actuation effort.  

Figure 6 indicates that actuation of MPC is significantly 

slower and of higher magnitude than the LQG actuation 

(This comparison is after converting to same units with the 

distance between left and right actuators at 1.2 m). This 

observation supports the approach we took to apply Kalman 

Filtering in the MPC loop, which treated the LQG output as a 

disturbance. In addition, this difference in the nature of the 

required actuation effort for the two control loops suggests 

that two different sets of actuation devices may have to be 

used (or a multi-bandwidth peak force device must be 

constructed). Some solutions already exist on the market 

(e.g.[5]). 

It can be observed from Figure 6 (top) that long 

prediction horizon (N=20) contributes to reduce the 

actuation effort. This possibility of optimizing actuation 

effort may not be possible from merely feedback (without 

preview/ predictive) control schemes.  

 
Figure 4: Trajectory response comparison 

In addition to improving the yaw responsiveness, and 

reducing low frequency sprung mass accelerations of the 

pickup truck, a specific advantage of applying active control 

on dependent solid-axle suspension can be observed from 

Figure 7. The magnitude response of one wheel to the 

disturbance applied at the other three wheels is significantly 

reduced. In other words, the proposed control scheme for the 

active suspension system serves to effectively remove the 

cross-coupling that existed (without the active suspension) 

between the corners, leading to improved tire-road contact 

condition and ride quality (20 dB reduction of body 

acceleration within 0-20 Hz). 

 
Figure 5: Roll angle and yaw rate performance 

 
Figure 6: Control signal output from MPC and LQG. 

 

 
Figure 7: Frequency response of left-front tire vertical load to road surface 

input on all four wheels. 
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VI. CONCLUSION 

In this paper, a cascade control structure has been 

proposed for a fully active suspension for a vehicle with 

solid axles. The low bandwidth upper level MPC controller 

utilizes trajectory preview information to reduce roll motion, 

improve yaw rate response and optimize the front/ rear 

anti-roll moment distribution. The high bandwidth lower 

level LQG controller reduces sprung mass pitch and bounce 

motion. It also improves tire-road contact conditions by 

stabilizing unsprung mass dynamics. Some of the additional 

observations include: 1) as postulated, preview information 

can be used to positively influence peak actuation efforts 

including steer angles by essentially pre-determining the 

desired vehicle roll angle, 2) the cascade design results in 

actuator efforts that feature separate bandwidth/magnitude 

requirements for the two control levels, and 3) the proposed 

approach suppresses cross-coupling between corners in a 

solid-axle suspension in the difficult to manage wheel-hop 

frequency regimes.  

APPENDICES 

A.  Nomenclature 

v Lateral velocity 

r Yaw rate 

V Forward speed 

zs zuf zur Vertical displacement (sprung mass, front 

unsprung mass , rear unsprung mass) 

ϕs ϕuf ϕur Roll angle (sprung mass, front unsprung 

mass , rear unsprung mass) 

θ Pitch angle 

Ftire Tire lateral force 

C1 C2 Tire cornering stiffness coefficients 

α Tire slip angle 

m ms Mass (vehicle, sprung mass) 

hs Height of sprung mass CG from plane defined 

by contact points of suspension springs and 

sprung mass. 

Ixx Ixz Iyy Izz Moments of inertia of sprung mass 

a b Distance from front/rear axle to CG 

δ Steer angle 

De Deviation from reference trajectory 

Kd Driver proportional gain 

τ Driver response time constant 

Y YL Vehicle lateral position, reference lateral 

position 

ψ Yaw angle 

La Driver predictive distance 

 1  2  3  4 Force generated by hydraulic units 

T1 T2 Anti-roll moment from MPC 

kϕf  kϕr Sprung mass roll stiffness 

cϕf cϕr Sprung mass roll damping 

W Wheelbase 

L1 L2 Distance between left and right actuator 

(front/rear) 

A B C D State space matrices 

LB UB Lower and upper bounds 

∗f ∗r Notation of front and rear 
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